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Abstract

Tabular medical datasets, like electronic health records (EHRs), biobanks,
and structured clinical trial data, are rich sources of information with the
potential to advance precision medicine and optimize patient care. How-
ever, real-world medical datasets have limited patient diversity and cannot
simulate hypothetical outcomes, both of which are necessary for equitable
and effective medical research. Fueled by recent advancements in machine
learning, generative models offer a promising solution to these data lim-
itations by generating enhanced synthetic data. This review highlights the
potential of conditional generativemodels (CGMs) to create patient-specific
synthetic data for a variety of precision medicine applications. We survey
CGM approaches that tackle two medical applications: correcting for data
representation biases and simulating digital health twins. We additionally
explore how the surveyed methods handle modeling tabular medical data
and briefly discuss evaluation criteria. Finally, we summarize the technical,
medical, and ethical challenges that must be addressed before CGMs can be
effectively and safely deployed in the medical field.
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1. INTRODUCTION

The field of precision medicine, defined as the personalization of medical treatment based on
each patient’s unique phenotype, has recently been fueled by advancements in machine learn-
ing (ML) and genomic sequencing, as well as the proliferation of tabular medical datasets (1).
In particular, tabular datasets, like electronic health records (EHRs) and structured clinical trial
data, provide a wealth of information and enable the study of how medical decisions dynami-
cally impact a patient or cohort. However, precision medicine requires diverse and simulatable
data, qualities currently lacking in real-world datasets. With respect to diversity, medical datasets
have historically under- or misrepresented certain health conditions and demographic groups
(2, 3), creating blind spots that clinicians are ill-equipped to treat. In addition, existing datasets
only capture observed patient outcomes, whereas the ability to simulate unobserved trajecto-
ries could enhance treatment optimization and prevent adverse outcomes by forecasting future
states.

The ideal solution to overcome existing limitations in medical datasets is to gather data cover-
ing every treatment, phenotype, and patient cohort necessary for creating personalized treatment
plans. However, such data collection is currently infeasible, requiring a level of randomization,
organization, financial cost, and social harmony [e.g., facilitating trust with marginalized groups
(4)] that the healthcare sector is currently incapable of. Until all-encompassing data collection
becomes a reality, it would benefit medical research to augment real-world tabular datasets with
equitable patient representation and the capacity to simulate patient trajectories.

One promising solution to flawed data is the application of generative models for synthetic tab-
ular data. Broadly, generative models use statistical methods like ML to learn the data distribution
and sample new data points.Recently, generativeMLmethods like generative adversarial networks
(GANs) (5) and denoising diffusion probabilistic models (DDPMs) (6) have proven effective in
generating high-quality synthetic medical image (7, 8) and EHR data (9).1

However, standard generative models are limited to learning, and thus sampling from, the
full data distribution. In this review, we highlight the potential of conditional generative mod-
els (CGMs), whereby an ML model learns the conditional probability distribution of the data
conditioned on user-specified patient characteristics. Because they enable the sampling of patient-
specific data, CGMs are a promising technology for precision medicine that can generate patient
trajectories, optimize treatment by simulating intervention effect, and ensure fair representation
of marginalized cohorts.

This review surveys the recent development of CGMs for tabular data from the lens of medical
applications. We structure the review as follows:

■ In Section 2, we cover important definitions, discuss the state of the field of generative
models, and outline existing applications to the medical domain.

■ In Section 3, we define the review’s scope and inclusion/exclusion criteria, which identified
43 relevant works.

■ In Section 4, we highlight and discuss two promising applications of CGMs to medicine:
(a) correcting for biases in real datasets and (b) simulating hypothetical patient-specific out-
comes. We also review how these approaches tackle the technical challenges in modeling
tabular medical data and conclude by briefly discussing CGM evaluation.

■ In Section 5, we summarize the technical, medical, and ethical challenges that necessitate
further exploration.

1Henceforth, we use the term EHR to refer to the tabular portion of health record data.
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2. BACKGROUND

2.1. Key Definitions

We next outline the problem formulation, provide two key definitions of CGMs, and define data
bias.

2.1.1. Problem formulation. Tabular data are defined as mixed-type data containing binary,
categorical, integer-valued, and continuous variables. Tabular medical data can be either longi-
tudinal2 (where every timestep is a single interaction the patient has with the healthcare system,
henceforth referred to as a visit) or static (representing a patient at a fixed point in time).

For a patient i and timestamp t, we represent their visit information v
(i)
t as an observed col-

lection of K continuous and categorical random variables v
(i)
t = {x(i)t,1, . . . x

(i)
t,K }. We allow for a

continuous variable to be either observed [x(i)t, j ∈ R] or unobserved [x(i)t, j = ∅]. Similarly, any cat-
egorical variable with cardinality M can be either observed [x(i)t, j ∈ {c1, c2, . . . cM}] or unobserved
[x(i)t, j = ∅]. We define a data point s(i) as a patient’s full health history, represented as a collection
of T visits s(i) = {v(i)

t1 , . . . v
(i)
tT } over timestamps t1, . . . tT. This representation reduces to static data

if there is only one timestamp (T = 1). We define a regularly sampled time series as one where
timestamps are discrete and evenly spaced (e.g., ti = i) and an irregularly sampled time series as
one where the timestamps are continuous (ti ∈ R, ti < ti+1).

Given a dataset of N patient trajectories D = {s(1), s(2), . . . s(N)}, a generative model qϕ learns the
joint distribution over all K variables and T timestamps: qϕ (∪T

j=1 ∪K
k=1 xt j ,k ) = qϕ (∪T

j=1vt j ).
Furthermore, we can define c as the features to condition that are a subset of the K · T patient

variables: c ⊂ (∪T
j=1 ∪K

k=1 xt j ,k ). Let the function f be a simple postprocessing equation designed to
create the final patient trajectory after sampling from the conditional model.We then provide the
following definition.

Definition 1. We define a conditional generative model (CGM) qθ as a model that, given
features c, learns the conditional data distribution for the remaining variables ∪T

j=1vt j − c
(where − denotes the set difference to exclude regenerating c). A synthetic patient s can
then be sampled from s ∼ f (qθ (∪T

j=1vt j − c|c)).
Explicitly,

1. For static data, c is a subset of k ≪ K variables and a CGM will generate the remaining
K − k variables v ∼ qθ (∪K

k=1xk − c|c). Then the postprocessing function f will concatenate
the sample v with c to get the synthetic patient data point s = (v, c).

2. For regular time series, define optional fixed patient attributes as the set of variables u.
To generate the next visit vt at timestep t, the CGM conditions on both fixed patient
attributes u and all K variables over the t − 1 prior visits: c = ((∪t−1

j=1v j ), u). The next visit
can be sampled from vt ∼ qθ (vt |c) = qθ (vt |(∪t−1

j=1v j ), u). If this generation is autoregres-
sively repeated for some n more timesteps, then f can concatenate these n visit samples
either with all of the patient’s real history to get the semisynthetic patient trajectory
s = (c, vt, . . . vt+n) = (u, v1, . . . vt, . . . vt+n) or with only u to get the fully synthetic trajectory
s = (u, vt, . . . vt+n).

3. For irregular time series, timesteps are no longer discrete and thus must be explicitly rep-
resented as a continuous variable. To generate the ith visit, the CGM is conditioned on
fixed patient attributes u, all variables from prior visits, and all past timestamp variables:

2We use the terms longitudinal and time series interchangeably.
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c = ((∪i−1
j=1vt j , t j ), u).The next visit and its timestamp can be sampled from vti ∼ qθ (vti , ti|c) =

qθ (vti , ti|(∪i−1
j=1vt j , t j ), u). A synthetic patient trajectory s can be sampled similarly to the case

of regular time series.

Finally, to avoid the reduction of a CGM to a discriminative model like a classifier, we reiterate
the focus on data generation and add the additional, albeit subjective, definition.

Definition 2. A CGM should be capable of sampling a fully synthetic dataset of similar
dimension (e.g., roughly K variables per timestep) and utility as the real data.3

For example, a model limited to next-step time-series forecasting for a single variable is a dis-
criminative predictor and not a CGM. However, an autoregressive model validated on multistep
forecasting for all K variables would be considered a CGM.We note that this distinction between
discriminative methods and CGMs is imprecise and could be open to interpretation.

2.1.2. Data bias. We represent the real (potentially flawed) data distribution as p, an external
ideal distribution as p∗, the learned CGM as qθ , marginalized group membership as the variable
A = a, and the rest of the data (all variables excluding A) as X.

Underrepresentation bias occurs when the real data’s marginal distribution p(a) does not match
the ideal p∗(a). We say qθ corrects for underrepresentation bias if it matches the ideal marginal
distribution: qθ (a) = p∗(a). Note that any CGM that conditions on A [e.g., qθ (X|a)] can oversample
A = a such that the resulting data match the marginal p∗(a).

Misrepresentation bias is due to a misalignment in the conditional distribution of X condi-
tioned on A = a; i.e., p(X|a) ̸= p∗(X|a). Unlike with underrepresentation bias, where the real
data conditional distribution is often replicated, i.e., qθ (X|a) = p(X|a), a CGM qθ that corrects
for misrepresentation bias must learn a different conditional distribution from the real data; i.e.,
qθ (X|a) ̸= p(X|a).

2.2. The State of the Field: Generative Methods for Tabular Data

Generative models, defined as methods that learn and sample from the full data distribution,
have been applied to synthesize realistic datasets across many data modalities. In the last decade
(2014–2024), generative models have excelled in the imaging and language fields, leading to the
development and proliferation of architectures like variational autoencoders (VAEs) (11), GANs
(5), and, more recently, DDPMs (6) and transformers (12). Unfortunately, methods specifically
designed for synthesizing tabular data are lacking, and most have resorted to adapting image- or
language-specific architectures.

In this section, we first outline existing generative methods (section 2.2.1) and then overview
applications toward tabular data (section 2.2.2) and privacy preservation (section 2.2.3).

2.2.1. Overview of generative models. We outline the technical fundamentals of four key
generative methods for the unfamiliar reader: GANs, DDPMs, recurrent neural networks
(RNNs)(17), and transformers. Two additional generative methods used in our surveyed works,
VAEs and Bayes nets, are described in the Supplemental Appendix.

2.2.1.1. Generative adversarial networks. One of the original models for deep generativemod-
eling, GANs (5) are optimized via adversarial learning whereby a generative model G learns a

3This definition is very similar to the one provided by van Bruegel & van der Schaar (10, p. 2): “a stochastic
mathematical model that outputs data and is fitted on real data with the purpose of describing and mimicking
(some part of ) the real data’s distribution.”
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distribution that approximates the real data distribution preal, as evaluated by learning the discrim-
inator D. The generative model G(z) is a stochastic function of a random latent vector z, typically
sampled from the normal distribution; i.e., z ∼ pZ = N(0, I ). The loss function is the minimax
objective capturing these incentives: minG maxD Ex∼preal [logD(x)] + Ez∼pZ [log(1 −D(G(z)))].

The advantages and challenges of using GANs largely arise from the absence of explicitly
estimating the data distribution likelihood. To address these shortcomings, References 13 and 14
reformulate the adversarial objective to increase training stability. Another variant, conditional
GAN (15), incorporates a class label as input into the generator and discriminator.

2.2.1.2. Denoising diffusion probabilistic models. DDPMs (also known as score-based gener-
ative models) were first introduced by Sohl-Dickstein et al. (16) and popularized by Ho et al. (6)
as a powerful method for image generation. Intuitively, DDPMs learn to denoise a noisy pertur-
bation of the original input. The noise perturbation and the denoising estimation are represented
by traveling forward and backward, respectively, in a Markov chain of length T. In the forward
diffusion process, the continuous-valued input x0 (e.g., an image) is perturbed over T steps using a
known transition equation q(xt|xt−1) that adds Gaussian noise. The final sample is assumed to have
a unit normal prior: xT ∼ p(xT) = N(0, I ). In the reverse diffusion process, a model pθ is trained to
denoise the sample by estimating the posterior pθ (xt−1|xt), which is parameterized as a Gaussian
distribution. Under this framework, DDPMs can be learned by optimizing the variational bound
on the negative log-likelihood:

E
[− log pθ (x0 )

] ≤ Eq

[
− log

pθ (x0:T )
q(x1:T |x0 )

]
= Eq

[
− log p(xT ) −

∑
t≥1

log
pθ (xt−1 )
q(xt−1|xt )

]
, 1.

where the right-hand side of the inequality can be minimized with respect to θ .

2.2.1.3. Recurrent neural networks. Sequence models, which include RNNs (17) and trans-
formers (12), are a family of methods that process sequential data like language and time series.
RNNs are an early form of sequential modeling that iteratively learn and propagate a representa-
tion of past sequence information to generate future sequence output. Several variations, including
long short-term memory (18), gated recurrent unit (19), and variational (20) RNNs, have since
been developed to address shortcomings of the original RNN method.

2.2.1.4. Transformers. In 2017, transformers (12) emerged as a state-of-the-art alternative to
RNNs for sequential modeling. Unlike RNNs, which iteratively update a hidden state represen-
tation, transformers apply a parallelizable mechanism called self-attention that computes each
item’s representation based on its relevance to other items in the sequence. Outputs can then
be generated by passing these representations through linear layers followed by a decoder (see
Reference 21 for a detailed walk-through of transformers). Transformers posses two key advan-
tages over RNNs. First, transformers are efficient to train because representations are calculated
in parallel for each item in the sequence. Second, transformers are better able to capture long-term
dependencies in the sequence without signal degradation. Despite these advantages, transformers
remain computationally intensive with inference time quadratic to sequence length.

2.2.2. Tabular generation. Classic statistical models generated synthetic tabular datasets long
before the popularization of neural-network-based approaches. Mixture models (22, 23), sequen-
tial decision trees (24), copulas (25), and Bayes nets (26, 27) can be good estimators of simple
low-dimensional datasets.Other nonneural-network generativemethods include imputation tech-
niques (28, 29) and variations of synthetic minority over-sampling technique (SMOTE) (30), a
simple yet effective baseline that generates synthetic points by linearly interpolating real data
points. First-generation neural-network-based tabular generative methods like GANs focused on
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how to jointly model continuous and categorical variables. Instead of learning the feature space
directly, a few early works transformed both variable types into a shared latent space and then
learned a GAN over the latent space (31–33).

2.2.3. Privacy-preserving generative methods. To date, a significant motivation to develop
generative tabular methods has been to synthesize privacy-preserving sensitive information such
as financial, health, or survey data (see Section 2.3.1 for further discussion of data privacy in the
medical field). Although quantifying the privacy of an algorithm (or dataset) is challenging and
fraught with legal uncertainties (34, 35), several works have proposed generative methods that
ensure privacy using theoretical or empirical measures. For example, differential privacy (DP)
(36), the most common theoretical metric, bounds the influence each individual data point has on
an algorithm’s output, thereby limiting the risk of reidentification. References 37–40 all propose
DP-guaranteed generative methods for synthetic tabular data.

Federated learning (41, 42) addresses another notion of privacy by ensuring that sensitive data
remain in-house during training. For instance, in the realistic scenario where several clients (e.g.,
hospitals) each hold exclusive access to sensitive health data, federated learning aggregates each
client’s model updates to train a single generative method. References 43–45 develop GANs that
use federated learning to securely aggregate updates over multiple sensitive tabular datasets.

2.3. The State of the Field: Medical Applications

The primary motivation of synthetic medical data thus far has been to preserve patient privacy,
which we summarize in Section 2.3.1. However, the potential of generative models to improve
medical data has not been fully explored (10, 46), and in Section 2.3.2 we highlight emerging
applications toward data debiasing and synthesizing digital twins.

2.3.1. Private and reproducible medical research. Due to the highly sensitive nature of
healthcare data and stringent regulations like the Health Insurance Portability and Accountabil-
ity Act (HIPAA), many sources of valuable medical information are inaccessible. Synthetic and
deidentified data would thus democratize access to medical data and enable applications such as
secondary analyses of clinical trial data (47), regulating medical devices (48), investigating ur-
gent pandemics like COVID-19 (49), testing medical software (50), training medical students on
realistic patient data (51), and many others as highlighted in References 52–55.

The availability of synthetic data also encourages research reproducibility and fosters collab-
oration (56), as evidenced by the proliferation of publicly available software tools and synthetic
datasets. For instance, two popular software tools, MDClone and Synthea (57), have been used to
synthesize datasets in several medical research studies (58).

2.3.2. Debiasing medical datasets. Real-world medical datasets often misrepresent histori-
cally marginalized populations and lack adequate sample size for rare health conditions. These
biases disproportionately harm certain populations, which can lead to incorrect conclusions about
treatment efficacy or the censorship of entire groups (2, 59, 60). For example, the exclusion of
pregnant women, children, and marginalized racial groups from clinical trials has resulted in ad-
verse or ineffective drug responses (3, 61, 62) such as the reduced efficacy of warfarin for Black
and Hispanic patients (63). The need for equitable and representative data has prompted US
Food and Drug Administration initiatives to recruit diverse clinical trial cohorts (64) and the
creation of the All of Us biobank. Nevertheless, biased medical data continue to be a pervasive
issue.

One promising application of generative models is to correct for these harmful biases. Al-
though there are many forms of data bias (65), most works have focused on underrepresentation
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bias (defined in Section 2.1.2) by augmenting imbalanced medical labels with synthetic data
generated from CGMs (66–69).While these approaches often replicate the real data distribution,
a few works have sought to improve the real data by removing other forms of data bias. Gen-
erative approaches for active data debiasing include weighted sampling during training (70–72),
transforming the sampling distribution post hoc (73), intervening on a causal model of the data
(74, 75), and enforcing algorithmic fairness (76, 77). Applying these debiasing approaches to
generate more representative data is one step toward ensuring that medical research serves those
who have been historically neglected.

2.3.3. Simulating the unobserved: digital health twins. Another emerging and compelling
medical application of CGMs is digital health twins, which virtually simulate a patient’s physio-
logical state, including their response to hypothetical interventions. Indeed, several recent works
have highlighted the promise of generative methods, specifically CGMs, to simulate digital health
twins by conditioning on patient-specific attributes (46, 78–81).

By dynamically integrating multimodal data sources, digital health twins have the potential to
advance precision medicine and drug development (82, 83). For instance, randomized controlled
trials, the gold standard for validating treatment efficacy in drug development, are expensive and
can raise difficult ethical questions (84). On the other hand, CGMs offer the affordable and po-
tentially more ethical option of simulating virtual patient cohorts for in silico trials (46, 79, 83, 85).
CGM-simulated digital health twins could also help predict disease progression or forecast patient
trajectories (78, 79, 86, 87). Finally, generated counterfactual patient data (88, 89) (as defined in
Section 4.1.2.3) can model the effect of a hypothetical intervention, thereby aiding in treatment
optimization and analyzing the effect of attributes like race on a patient’s quality of care (79,
85, 87).

2.4. Related Works

In Table 1, we list 16 related review papers that address generative methods for tabular data and
assess the following criteria: (a)Was the review focused on the medical domain? (b) Did the review
highlight the difficulties specific to modeling tabular data? (c) Were methods for tabular time-
series generation included? (d) Were modern, state-of-the-art ML methods beyond autoencoders
andGANs covered? and (e) Did the review cover applications outside of privacy preservation, such
as data enhancement?

We note a few trends from the reviews. As expressed in Reference 53, there are few meth-
ods for generating longitudinal medical data, despite the data type’s ubiquity. Furthermore, the
vast majority of prior reviews (all but Reference 87) do not cover modern generative methods
beyond classical statistical methods, GANs, and autoencoders. Finally, while most of the works
highlighted privacy preservation applications, a few reviews recognized the potential of genera-
tive methods to improve data. References 10, 69, and 90 discuss generative methods that enforce
fairness and augment for underrepresented groups, andReferences 46, 78, and 79 highlight the po-
tential of simulating digital health twins. Most similar to our work, Reference 85 reviews medical
applications outside of privacy but limits the coverage to GANs.

In this review, we contribute the following:

1. We highlight the importance of CGMs for tackling two applications relevant to precision
medicine: debiasing datasets and simulating digital health twins.

2. We review models that generate either static or longitudinal (time-series) tabular data, and
we discuss how these methods handle the technical difficulties specific to this data modality.

3. We cover emerging generative methods, including DDPMs and transformers.
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Table 1 Related review papers

Reference Medicala Tabularb Time seriesc
Modern
modelsd Improve datae

90 × ×
85 × × × ×
91 ×
92 × ×
10 ×
78 × ×
93 × × × ×
53 × × ×
52 × ×
46 × ×
87 × × ×
79 × ×
94 × × ×
69 × ×
95 × × ×
96 ×

aWas the review focused on the medical domain?
bDid the review highlight the difficulties specific to modeling tabular data?
cWere methods for tabular time-series generation included?
dWere modern, state-of-the-art machine learning methods beyond autoencoders and generative adversarial networks
covered?
eDid the review cover applications outside of privacy preservation such as data enhancement?

3. SELECTION

3.1. Scope

We next define the inclusion/exclusion criteria of the surveyed methods. The three criteria for
inclusion are time, topic, and data.

1. Time: The article was published between January 2019 and May 2024.
2. Topic: The article must propose a new method that fits Definitions 1 and 2 of a CGM.
3. Data: We allow for the data to be tabular (a mix of continuous and categorical vari-

ables), completely categorical (e.g., binary medical codes), or completely continuous (e.g.,
biomarkers as a time series).

The four criteria for exclusion aremodel intention, language, availability, and prior knowledge.

1. Model intention: As per Definition 2, we exclude CGMs solely intended for prediction
instead of synthetic data generation.

2. Language: The article must be in English.
3. Availability: The article must be publicly available.
4. Prior knowledge: As classified in Reference 53, the method must be purely data driven,

whereby only the training data are used for learning the generative model, and there is no
integration of domain knowledge or human expertise.

To incorporate a variety of potentially useful methods, we did not require an article to be
motivated by medical applications. Additionally, while peer-reviewed articles were preferred, we
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make a few exceptions and use our judgment to assess article quality. Although requiring an article
to be peer-reviewed ensures no false positives, it can certainly lead to false negatives. We note in
Table 2 which articles were not peer reviewed at the time of our search.

3.2. Search Details

We ran our search first in November 2023 and again inMay 2024 using Google Scholar, PubMed,
arXiv, and Science Direct as sources. The specific search terms are listed in the Supplemental
Appendix. After screening titles and abstracts, we collected a list of approximately 100 articles
that fit the inclusion/exclusion criteria. We then read and narrowed down the list to the final
43 papers.

4. ANALYSIS

The 43 selected methods are outlined in Table 2. In Section 4.1, we discuss how these works
address two emerging applications toward precision medicine: data debiasing and digital health
twins. In Section 4.2, we review how these methods tackled the technical issues of tabular health
data. We conclude in Section 4.3 with a brief overview of how CGMs are evaluated.

4.1. CGMs Defined by Use Case

We next analyze the relevant 43 CGM methods based on their relevancy to two medical
applications: data debiasing and digital health twins.

4.1.1. Data debiasing. In this section we highlight CGM approaches that correct for
(a) underrepresentation bias and (b) misrepresentation bias (both of which are defined in
Section 2.1.2).

4.1.1.1. Balancing group underrepresentation through data augmentation. Although any
CGM that conditions on the underrepresented group could correct for underrepresentation bias
via data augmentation, here we cover works that explicitly evaluate the effect of augmentation
on downstream prediction tasks. With respect to the underrepresented group, only two works
consider a historically marginalized group, while the rest address label imbalance (e.g., a rare
disease). HealthGen (102) demonstrates that upsampling underrepresented groups, such as those
with government insurance or who identify as Hispanic, can occasionally improve performance in
clinical prediction tasks. Another method, MTGAN (99), generates time-series data for rare dis-
eases and shows that pretraining a classifier on their synthetic data outperforms other generative
models. Reference 101, which discusses RelDDPM, and Reference 98 both propose and evaluate
DDPM-based CGMs that upsample multiple conditional attributes. Despite the promise of
CGM-based data augmentation, performance gains are currently inconsistent, and SMOTE (30),
a simple baseline based on point interpolation, remains a strong competitor (98, 100, 101).

4.1.1.2. Correcting for misrepresentation bias in real data. Other methods address data
misrepresentation by learning a debiased version of the original data distribution, often by trans-
forming the feature distribution or enforcing algorithmic fairness. As an example of the former,
CTGAN (106) upweights the importance of underrepresented groups by sampling points dur-
ing training based on the logarithm of the group frequency, a correction akin to oversampling or
reweighting. An ablation study shows that this approach, called training-by-sampling, increases
the overall F1 score by almost 18% when compared to sampling the true group frequency. Sim-
ilarly, CTAB-GAN+ (108) applies a logarithmic transform to prioritize learning a feature’s long
tails, which often contain outlier points.
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Another approach to learning a debiased data distribution is to enforce a specific algorith-
mic fairness metric via an auxiliary loss function. For example, Bt-GAN (103) enforces statistical
parity (140) by penalizing the mutual information between protected group status and the remain-
ing generated features. FLMD (104) applies a two-stage framework that controls for unobserved
confounders using the deconfounder method (141) and then optimizes for counterfactual fairness
(142) under a hypothetically different demographic attribute. Similarly, Reference 107 proposes
a GAN-based method that generates a counterfactually fair dataset. Requiring only a preliminary
causal model of the data, Reference 107 shows the resulting synthetic dataset can train a classifier
that upholds fairness and accuracy on the original biased data.

4.1.1.3. Potential and cautionary recommendations for development. While a promising ap-
plication, data debiasing using CGMs requires determining which biases are unwanted. For
example, Bt-GAN, FLMD, and similar fairness-enforcing generative methods (76, 77) as-
sume a specific algorithmic fairness metric and prediction task to debias and are thus not
generalizable to other metrics or tasks. An additional challenge is the lack of standardized eval-
uation, exemplified by the discordance of metrics and baselines for benchmarking augmentation
efficacy.

4.1.2. Digital health twins. A second medical application of CGMs is digital health twins.
In this section, we highlight approaches that use CGMs for either (a) prospective generation of
patient trajectories or (b) counterfactual generation by simulating patient data under a hypothetical
intervention.

4.1.2.1. Prospective patient generation: methods. By conditioning on past medical history,
CGMs can forecast a patient’s health trajectory by autoregressively generating all variables over
several timesteps. We further split the identified works into those that model regular versus
irregular time-series data.

First, as defined in Section 2.1.1, regularly sampled time series contain allK variables at discrete,
evenly spaced steps. Regular time series are less common in real-world health data, and most of
the surveyed works transform irregular into regular time series by aggregating each variable over
evenly spaced time intervals.

Although most of the surveyed works (97, 102, 104, 111, 118, 121, 124) model regular time
series with RNNs (17), only three (120, 122, 126) use transformers. Because transformers were
developed to conditionally predict the next discrete variable for language generation, application
to tabular longitudinal health data requires preprocessing the data into the correct format.
PromptEHR (126) massages EHR data into visit-level units to feed into the encoder–decoder
transformer BART (143). Using a GAN framework, Clinical-GAN (122) generates longitudinal
trajectories from a transformer-based generator. However, both approaches are constrained to
discrete medical codes.

Many works further optimize synthetic time-series realism by adding an auxiliary discrimina-
tor loss, thereby forming a GAN structure. Clinical-GAN, EHR-M-GAN (118), MaskEHR (97),
and SynTEG (121) all train a discriminator to detect real from fake trajectories generated by a
sequential model, where only Clinical-GAN uses a transformer as the generator.

A more realistic form of medical data is irregularly sampled time-series data. StoCAST (115),
HALO (110), CEHR-GPT (123), and the method described in Reference 127 all model irreg-
ularly sampled data as inherently regularly sampled by utilizing sequence models like RNNs or
transformers. However, to incorporate continuous-valued timestamps of each medical observa-
tion, three of these methods (110, 115, 127) add sojourn time (the time between visits) as an
additional continuous variable to model. Alternatively, CEHR-GPT represents time between
visits by inserting the appropriate time-specific tokens.
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However, merely incorporating a continuous-valued timestamp variable may not robustly
model the distribution of irregularly sampled data, as the learned data density function is still
discretely sampled. As a potential solution, POPCORN (112), VHP (119), and RNN-ODE (125)
incorporate temporal point processes (144) to explicitly model the density of variable occurrence
over a continuous function of time. However, neither POPCORN nor VHP handles both con-
tinuous and categorical variables, and RNN-ODE only models continuous regularly sampled and
categorical irregularly sampled data.

4.1.2.2. Prospective patient generation: potential and cautionary recommendations for develop-

ment. Approaches like those described in References 115, 123, and 126 that condition on both
patient history and immutable demographic information highlight the potential of CGMs for sim-
ulating personalized trajectories. However, applying CGMs to tabular time-series data remains
difficult. For one, only a few of the surveyed approaches (104, 115, 117, 118, 120, 125, 127) model
both continuous and categorical time-series data, a challenge further discussed in Section 4.2.1.
Second, although many methods optimize for generating realistic longitudinal datasets (97, 110,
114, 116–118, 121, 123, 127), often by incorporating GANs, the field of time-series modeling
prioritizes localized forecasting. This problem might be addressed by leveraging transformers,
which are adept at capturing long-term dependencies. Finally, modeling irregular time-series data
remains an unsolved problem.

4.1.2.3. Retrospective patient generation: methods. Intuitively, counterfactual refers to a hy-
pothetical scenario had the observed data been generated under different conditions, usually by
changing a single variable (145). More concretely, counterfactual generation requires first inter-
vening on this variable (which we refer to as treatment or label intervention), forcing it to assume
a specific value in the causal model, contrary to what was observed.4 Robust estimation of the
counterfactual under label intervention enables treatment effect estimation, which is useful for
a broad range of medical applications. However, generating counterfactuals is challenging, as it
relies on several strong assumptions and requires a causal model of the data (145).5

One method, GOGGLE (105), estimates the causal model via a message-passing algorithm
and thus could reasonably be a causally accurate counterfactual generator. However, this appli-
cation was not empirically assessed and furthermore requires learning a separate GAN for each
conditional generation task.

Sacrificing rigor for tractability, many approaches forgo the need for a causal model and ap-
proximate the process of label intervention. References 128 and 130–132 frame the intervened
label as a conditional input into a CGM. An observed data point is then transformed into the ap-
proximate counterfactual by altering only the label in the conditional input to be different than
what was observed.

Unlike static data, time-series data contain a natural notion of causality based on temporal
occurrence. Even if the true causal model is not known, CGMs approximating counterfactual
generators can condition on both patient history and the desired medical intervention to generate
future hypothetical data. SCouT (120) uses a transformer to simulate a patient’s future trajectory as
if they had hypothetically received the control treatment. Given a target patient and the desired

4As pointed out by Abroshan et al. (107) and Pearl’s three rungs of causality (145), label intervention is not
always equivalent to counterfactual generation. However, we consider this distinction out of scope for this
review and refer to them interchangeably.
5Note that generating counterfactually fair data (142) is roughly the opposite of generating counterfactuals.
Briefly, counterfactual data generation captures the effect of the intervened label on the rest of the data,whereas
counterfactually fair data remove the impact of the intervened label.
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hypothetical treatment at a specific timestep, TWIN (116) searches the observed data for the
top-k patients who are most similar to the target patient but received the desired treatment. An
autoencoder then takes as input the target’s history, the top-kmost similar patients, and the desired
treatment to generate the future counterfactual data for the target patient. Although promising
counterfactual approximators, both SCouT and TWIN require sufficiently diverse patient data.

4.1.2.4. Retrospective counterfactual patient generation: potential and cautionary recommen-

dations for development. Counterfactual-generating CGMs could enable personalized and
equitable medicine. For instance, the approaches discussed in References 116 and 120 are promis-
ing in silico simulators for synthetic control arms, and those in References 128 and 130–132
could help interpret how race affects a patient’s clinical outcomes. However, there is a necessary
trade-off between causal precision and efficiency. Approaches that approximate label intervention
(128, 130–132) are computationally efficient but lack causal rigor.Other challenges to counterfac-
tual CGMs include the difficulty of modeling nontrivial interventions, assumed access to a label
classifier, and potential counterfactual implausibility. For example, approximating counterfactual
generation could lead to impossible outcomes like a patient whose age decreases after a treatment.
The concept of counterfactual plausibility is considered by References 131 and 134 and could be
further addressed by constraint-based generative methods (146).

4.2. Conditional Generative Models Defined by Technical Capacity

The practical use of CGMs requires the ability handle real-world tabular medical data. Unfor-
tunately, aside from probabilistic graphical models like Bayes nets, which are computationally
feasible for only a modest number of variables, there is a dearth of generative methods that jointly
learn continuous and categorical data. Until an architecture is developed specifically for tabu-
lar data, generative methods must compromise between distribution accuracy and computational
efficiency.

Tabular medical data pose several modeling challenges, as they often involve (a) multiple
variable types, (b) missing-not-at-random (MNAR) features, (c) high-dimensional data, (d) small
sample sizes, (e) time-series data (as covered in Section 4.1.2), ( f ) imbalanced or biased distribu-
tions (as covered in Section 4.1.1), and (g) a high number of unobserved confounders. We first
highlight how the surveyed works handle issues a–d and then discuss the trade-offs of different
CGM architectures.

4.2.1. Handling mixed-type tabular data. Twenty-five of the surveyed works model both con-
tinuous and categorical data. To handle mixed-type data as model input, many works concatenate
one-hot encoded categorical data with continuous data that are either discretized into bins (115,
127) or scaled to a [0, 1] range (104, 117, 128, 129, 131, 132). While such preprocessing is simple
and enables learning a single model, merging two distinct variable types into the same feature
space sacrifices information, particularly for continuous variables. A slightly improved version of
continuous data discretion is mode-specific normalization (106, 108, 109), which models each
continuous variable as a probabilistic representation of a fitted variational Gaussian mixture.

Modeling mixed-type data using transformers, which were developed for discretized data like
language, poses another challenge. References 120, 136, and 137 discretize each continuous value
into its own token to be embedded alongside categorical variables. Alternatively, TabMT (138)
proposes an embedding method where continuous variables are first quantized via k-means and
then transformed into a numerically friendly ordered embedding.

References 100, 118, 125, 130, and 135 model continuous and categorical data by separate, po-
tentially learnable, embedding functions that project each variable type into a shared latent space.
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EHR-M-GAN (118) trains separate autoencoders for categorical and continuous data and adds
an auxiliary loss to enforce latent space similarity. TabDDPM (135) and the method discussed in
Reference 98 map continuous data using Gaussian diffusion and categorical data using multino-
mial diffusion (147) to a latent space with a unit normal prior.While these approaches preserve the
underlying distributions of each variable type, they independently learn the latent information of
categorical and continuous variables even though the variables are likely not independent of each
other.

Finally, the methods discussed in References 105 and 139 both learn a probabilistic graphical
model (PGM) over the data, which naturally handles mixed-type data by explicitly learning each
variable’s conditional distribution.

4.2.2. Handling missing-not-at-random features. One challenge specific to tabular health-
care datasets is the presence of MNAR features. Most works assume unobserved features are
missing completely at random and thus can be dropped or imputed. However, several studies
have refuted this assumption by proving missingness can be informative of measured clinical
outcomes (102, 148, 149), e.g., reflecting a patient’s access to healthcare (150). Thus, han-
dling real-world medical datasets requires a generative model that learns structural patterns of
missingness.

Of the surveyed works, References 97, 102, 108, 122, 123, 126, 127, 136, 137, and 138 preserve
missingness in the learned distribution. Doing so is relatively straightforward for categorical vari-
ables, where missingness can be appended as a potential class for every variable. For example, the
transformer-based method GReaT (137) incorporates a missingness token into its discrete-valued
vocabulary. Missingness can also be handled by omission in the case of autoregressive CGMs that
output data without a fixed order. ClinicalGAN (122), MaskEHR (97), and the method discussed
in Reference 127 output any number of the total K variables at each visit, where omitted variables
are implicitly missing.

Representing MNAR continuous features is less straightforward. HealthGen (102) explic-
itly models a missingness mask for each patient and uses a masked loss over observed data to
avoid representing missing continuous variables. CTAB-GAN+ (108), inspired by mode-specific
normalization (106), appends a binary missingness variable as a potential mode when representing
continuous variables.

4.2.3. High-dimensional data. Although real-world medical datasets like EHRs typically con-
tain a large number of features, only four of the surveyed works (104, 105, 125, 132) generate
high-dimensional tabular data (defined as K > 100).6 SMOOTH-GAN (132) learns 166 static
variables from the Cerner HealthFacts Database, and RNN-ODE (125) and FLMD (104)
both learn tabular time-series data from MIMIC-III with 104 and 941 variables per timestep,
respectively.

Other methods considering high-dimensional data are limited to binary variables like disease
(e.g., ICD-10) or prescription codes. For instance, transformer-based CGMs like those described
in References 97, 110, and 122 encode thousands of discrete medical codes into a fixed or learnable
embedding space.

4.2.4. Small datasets. Although some medical datasets, e.g., EHRs, have a large sample size,
datasets collected from clinical trials or disease-specific cohorts are often small due to monetary
cost, patient risk, or phenotype rarity. Applying CGMs for rare disease augmentation or synthetic
control arms thus requires the ability to learn from but not overfit to small datasets.

6We consider a time-series dataset with T steps andM features has K = M features, not K = T · M.
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Approximately 40% of the surveyed works evaluate a dataset with <1,000 patient data points.
The transformer-based method GReaT (137) reduces overfitting by using a pretrained large lan-
guage model on a small static dataset of 8 features and 954 samples. TWIN (116) considers data
with two variables from only 77 patients. To prevent overfitting, TWIN learns a weighted aggre-
gation of a patient with their most similar data points, which feeds into a small generative model.
Finally,PGMs likeGOGGLE (105) are ideal for learning small datasets, as they regularize variable
dependencies and thus require minimal parameters.

4.2.5. Generative models: pros and cons. In this section, we categorize the surveyed works
by the generative methods used and discuss each method’s pros and cons.

4.2.5.1. Generative adversarial networks. Fourteen of the surveyed works incorporate GANs
into their generative framework. GANs have the benefit of intuitive appeal, historical precedent,
and flexibility in selecting the underlying model for the discriminator and generator. Additionally,
by optimizing over an adversarial loss and thus avoiding explicit likelihood approximation, GANs
offer greater flexibility in the learned distribution and are typically much faster to sample from
compared to PGMs or DDPMs. As shown by the surveyed works, GANs are able to generate
time-series data by learning an autoregressive generator to simulate full or partial trajectories and
an auxiliary discriminator loss to ensure trajectory realism (97, 99, 118, 119, 133).

However, GANs have limitations. The absence of explicit likelihood estimation complicates
performance assessment, and the adversarial optimization hinders model convergence. Despite
attempts to stabilize performance (13, 14), GANs remain infamously difficult to train and often
suffer from mode collapse, whereby only a limited variety of outputs are generated. Furthermore,
GANs are constrained to only handle continuous data, as it is difficult to backpropagate gradients
from the discriminator to a generator that outputs discrete values. To apply GANs to categori-
cal or tabular data, a few of the surveyed works pass the probabilistic generator output into the
discriminator, which now has the easy task of separating real discrete from synthetic continuous
data (131, 132). Other more robust solutions are to learn the GAN over a continuous latent space
from embedded categorical data (100, 118, 121) or to apply the Gumbel-Softmax trick (151).

4.2.5.2. Denoising diffusion probabilistic models. DDPMs are an emerging and promising
generative method used by four of the surveyed works (98, 101, 113, 135). To handle tabular data,
TabDDPM (135) and the method described in Reference 98 leverage multinomial diffusion (147).
In a follow-up work applying TabDDPM to tabular EHR data, Ceritli et al. (152) demonstrated
that DDPMs outperformed simple GAN baselines in terms of data utility and realism, although
they fall short on privacy metrics. DDPMs could also be used to model time-series data. For in-
stance, although limited to continuous variables, TimeGrad (113) trains a DDPM to predict next
timestep data conditioned on prior information. By optimizing an explicit likelihood estimation
instead of adversarial loss,DDPMs outperformGANs in imaging in terms of sample diversity and
avoiding mode collapse (153, 154). Although a similar diversity assessment for tabular datasets is
currently lacking, DDPMs present a promising alternative to GANs that could better represent
rare diseases and marginalized groups.

One challenge, however, in applying DDPMs to the tabular domain is the assumption of
continuous-valued data when performing Gaussian diffusion, which perturbs the data by adding
and removing Gaussian noise. Although variants of categorical-valued diffusion (147, 155) exist,
categorical synthetic data have not undergone the same rigorous validation as continuous data
have in imaging. Another disadvantage of DDPMs is their computational intensity, particularly
during inference. Combined with the requirement to match the latent space dimension to the
input size [i.e., dim(x0) = dim(xi) �i = 1, . . .T ], which might be prohibitively large for data like
EHRs, DDPMs are among the slower methods for generating synthetic data.
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4.2.5.3. Recurrent neural networks and transformers. The vast majority of the surveyed works
modeling time-series data use RNN-based methods. StoCast (115) learns an RNN to capture
patient history and then generates next timestep data by conditioning on the RNN hidden state
and patient-specific fixed variables. Only 5 of the 20 surveyed works for time-series generation
employ transformers (110, 120, 122, 123, 126).

Transformers can also be applied to generate static tabular data. REaLTabFormer (136) fixes an
arbitrary variable order and uses the decoder-only transformer GPT-2 (156) to autoregressively
generate relational and nonrelational static tabular data. TabMT (138) optimizes the bidirec-
tional encoder-only transformer BERT (157) usingmasked languagemodeling,where conditional
sampling occurs by predicting all the masked variables.

Transformer-based CGMs exhibit many advantages. First, transformers are able to model
high-dimensional data by tokenizing and aggregating inputs. Second, they are superior to RNNs
at capturing long-term variable dependencies, which is advantageous for modeling longitudinal
EHR data where past health conditions influence the current health state. Third, transformers
can easily represent MNAR features.

However, it is unclear how good transformers are at understanding and generating continuous
variables. Additionally, transformers require sufficient computational resources and dataset size
for training.When evaluating run time, Gulati & Roysdon (138) showed their transformer-based
approach took 144 times longer to train and 66 times longer for inference compared to VAE and
GAN baselines. For small medical time-series datasets like clinical trials, RNNs might be a more
appropriate model.

Recently, there has been a trend toward transformer-based foundation models, whereby a large
model is first pretrained over massive but typically closed-source datasets and then fine-tuned for
a specific application, like data generation (137).While foundation models can potentially inherit
prior medical knowledge learned during pretraining, the lack of quality and transparency in the
pretraining dataset risks introducing false information and harmful biases into the data generation
process.

4.3. Evaluation

Evaluating generative methods remains challenging. Unlike supervised models, which have a
well-defined objective, generative models are a tool whose product—synthetic data—should be
amenable to a range of analyses unlikely to be known a priori. If the intended use case of the
model is replicating the real data, an intuitive measure of success is the distance between the
real and learned joint data distributions via a likelihood function. Conversely, if the goal is data
enhancement, as with data debiasing, success is achieved by simultaneously minimizing the likeli-
hood function and achieving the enhancement objective. Unfortunately, computing likelihood is
often intractable and unlikely to be comprehensive.

The ambiguity of synthetic data has led to a proliferation ofmetrics for evaluating the quality of
generative models and synthetic data. Alaa et al. (158) proposed an evaluation framework based on
fidelity, generalizability, and diversity, whereas other works suggested utility, resemblance, and pri-
vacy (93, 159). Similarly to Vallevik et al. (160), we identify five categories for evaluating synthetic
tabular data: (a) utility, (b) resemblance, (c) privacy, (d) diversity, and (e) computational cost.

4.3.1. Evaluation categories. We refer the reader to References 25, 53, 85, 92, 93, 159–163 for
more thorough discussions on synthetic data evaluation and metrics.

4.3.1.1. Utility. Utility aims to measure synthetic dataset performance for any downstream
task that the real data would be used for. In practice, evaluating utility requires training an ML
prediction model and comparing performance across real and synthetic data. One test might
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ensure an ML classifier trained on real data can generalize to synthetic data; other variations
of this train-test framework are possible and covered in References 93 and 159. If the model is
intended to resemble the real data, the optimal utility is for synthetic data to perform comparably
to real. However, if the objective is to debias or augment the real dataset, it is preferable for the
synthetic dataset to perform better.

4.3.1.2. Resemblance. Resemblance metrics evaluate how statistically similar the synthetic data
are to the real data, such as by testing univariate or multivariate distribution similarity. Like util-
ity, the value of resemblance depends on the model’s intended purpose. If the model is trying to
mitigate harmful biases, requiring comparable resemblance to real data might not be appropriate.

4.3.1.3. Privacy. Although not the focus of this review, it may be crucial to ensure the synthetic
data protect sensitive information of real individuals. Privacy metrics measure this disclosure risk
and are explored further in References 52, 53, 85, and 93.

4.3.1.4. Diversity. One category of evaluation metrics that necessitates more attention is diver-
sity, a term we use to also encompass fairness. A few works (158, 164) measure diversity in terms
of sample coverage, where it is ideal for the real data to be sufficiently covered (in feature or latent
space) by synthetic data. On a similar thread, References 10, 160, 162, 165, and 166 highlight the
importance of fairness metrics in ensuring identified marginalized groups have the same quantity
and quality in both synthetic and real data. For example, Bhanot et al. (166) proposed a log dispar-
ity score to measure marginalized group representation in both static and longitudinal healthcare
data. Other works (74, 103, 104) assume that adherence to specific algorithmic fairness metrics,
like statistical parity, indicates a successful synthetic dataset.

4.3.1.5. Computational cost. Hernandez et al. (93) and Vallevik et al. (160) identified the
importance of evaluating the computational cost and carbon footprint of generative models.Com-
putational complexity metrics—which include listing the number of model parameters, training
and inference time, and computational resources used—are helpful for both practical implemen-
tation and tracking a model’s environmental impact. For instance, transformer-based methods are
a promising approach for generating high-quality tabular data, but they require a large number of
computational resources and thus might not be optimal for routine use in low-resource settings.

4.3.2. Recommendations for development. Given the wide range of medical applications, we
recommend further investigation into developing health-specific evaluation metrics for CGMs.
For instance, a generative model intended to preserve patient privacy should have different eval-
uation criteria than one synthesizing digital health twins. In the latter scenario, the priority of
evaluation might be the detection of rare and lethal health outcomes over privacy or computa-
tional complexity. Thus, developing CGM evaluation methods in each medical setting requires a
collaborative effort among stakeholders to determine what constitutes a success.

We also highlight the importance of interpretable evaluation, especially for end users like clin-
icians who might have limited understanding of metric implication. Metric performance often
involves trade-offs (e.g., fairness may be inversely related to utility), complicating the ability to
claim one model is better than another. Therefore, it is crucial to be able to interpret and translate
evaluation claims into practical advice. We discuss this and other limitations below.

5. LIMITATIONS

Despite their potential, CGMs carry risks that could exacerbate existing problems for the medical
community, and it is critical to proceedwith research that is cautious, thoughtful, and collaborative.
Here, we address the limitations of current CGMs, concerns for the field, and areas for further
research. We categorize these into technical, medical, and ethical limitations.
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5.1. Technical

We first highlight the need and technical limitations of current CGMs in modeling missing
features and causal effects.

5.1.1. Modelingmissing-not-at-random features. As highlighted in Section 4.2.2, generative
models unable to represent MNAR features risk losing essential information and could further
marginalize groups typically associated with these features (102, 148–150). One recommended
area of technical development is appropriate modeling of MNAR features, an issue also explored
in References 167–169. We also recommend thorough analysis of the missingness mechanism
before assuming missing values can be imputed or removed.

5.1.2. Causally aware generative models. In many settings that require decision-making, it is
essential to guarantee or interpret causal effects. However, most CGMs only capture correlations
between variables and thus conditioning on a label do not guarantee any meaningful causal ef-
fect. Alternatively, PGMs like Bayes nets capture causal relationships, but existing methods only
approximate the causal model and are limited to a modest number of variables (105, 139). De-
veloping causally aware generative models, as recently explored by Wen et al. (170) and Rahman
et al. (171) and in the review by Komanduri et al. (89), would promote the application of synthetic
data for medical research, including clinical decision-making.

5.2. Medical

Generating synthetic patient health data requires developing targeted CGMs for medical appli-
cations. Here, we emphasize the importance of multimodal modeling and integrating domain
knowledge.

5.2.1. Multimodal integration. Although we limit our review to tabular data,we recognize that
using one data modality might capture only a partial view of a patient’s health state and potentially
lead to suboptimal phenotyping. As highlighted in other reviews (79, 87), the influence of CGMs
in medicine would be enhanced by integrating tabular data with complementary modalities, such
as free-text clinical notes (86), 3D computed tomography scans (172), or genomic information.
Developing generative models for multimodal data generation is a promising area of research,
particularly in precision medicine, as digital health twins require simulating multiple sources of
patient data.

5.2.2. Incorporating prior knowledge. Our survey focuses on data-driven methods and ex-
cludes so-called hybrid generative models that utilize domain-specific knowledge in the form of
expert feedback and medical theory (53). While data-driven CGMs have many advantages (e.g.,
they are easier to train),we recognize that integrating domain expertise and prior biological knowl-
edge could empower CGMs to fully represent the nuances of a patient’s physiology.This expertise
could be from medical ontologies (173), knowledge graphs (174), or other biological priors in the
form of constraints (134, 146, 175).

5.3. Ethical

There is currently a lack of standardized frameworks of how to ethically deploy or use syn-
thetic data. We highlight three such ethical gaps that require our attention: better regulatory
oversight, interpretable producer-user contracts, and the prioritization of diversity in generative
modeling.

5.3.1. Regulatory oversight. The current relationship between synthetic data and govern-
mental oversight is highly ambiguous, particularly in the United States (48, 78, 176, 177). Outside
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of privacy-protecting regulations like HIPAA and a few guidelines for artificial intelligence
integration (178, 179), a governmental framework regarding responsible usage of synthetic data is
lacking.

Without regulatory oversight, CGMs risk harming patients and compromising the quality of
medical research. Similarly to Giuffrè & Shung (78), we emphasize the need for governmental
regulations that (a) explicitly define synthetic data, (b) outline the specific scenarios and extent to
which synthetic data can be used to generate evidence, and (c) describe how to prevent harm to
individuals who contribute their data. Additionally, a regulatory body from diverse backgrounds
should be tasked to oversee and enforce these rules.

5.3.2. Interpretable producer–user contract. Currently, computational engineers release a
generative model or synthetic dataset, typically along with model evaluation metrics. From these
evaluation results, users must determine if the model or data are fit for purpose regarding their
specific application. However, as covered in Section 4.3, generative model evaluation is an open
problem plagued by a vast number of potentially conflicting metrics and a lack of standardization.
Combined with the aforementioned absence of regulatory guidelines, there is a concerning risk
of miscommunication and misuse between synthetic data producers and users. To mitigate mis-
use, we recommend that data producers document acceptable applications of their data (or model)
through an interpretable and standardized guideline document.The resulting document for a syn-
thetic dataset might resemble a mixture of Model Cards (180) and Datasheets (181), two existing
reporting standards in ML. The scope and content of these guidelines should be established by a
diverse group of industry, research, legal, and medical experts.

5.3.3. Prioritizing diversity and fairness. Generative models have historically focused on
replicating real data and privacy preservation. However, neglecting diversity and fairness in syn-
thetic data risks harming already disadvantaged populations and misrepresenting rare disease
cohorts. For instance, although upsampling via data augmentation is canonically used to cor-
rect for representation bias, there is limited research on how augmentation affects diversity and
stereotypes.

We thus recommend prioritizing diversity in this field. First, we highlight the need for task-
agnostic data diversity metrics, unlike traditional algorithmic fairness metrics that target a specific
prediction task. Second, we suggest that all synthetic datasets undergo a standardized and rigorous
process evaluating the presence or introduction of harmful biases. Third, we recommend investi-
gating diversity-enhancing CGMs that remove identified harmful biases, as seen by recent efforts
like those described in References 71, 182, and 183. Although no panacea, developing generative
methods that diversify data could enhance the representation of marginalized groups and promote
equity in precision medicine.

SUMMARY POINTS

1. Conditional generative models (CGMs) have the potential to improve the diversity of
data representations and advance precision medicine via digital health twins.

2. Our review covers 43 works that propose CGMs for tabular static or time-series data.

3. Although the surveyed works propose state-of-the-art methods to tackle modeling
tabular medical data, there remains opportunity for innovation such as the lack of
tabular-specific machine learning architectures.
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4. Evaluating the quality of synthetic data and generative models is still being actively ex-
plored. We highlight five evaluation axes: utility, resemblance, privacy, diversity, and
computational cost.

FUTURE ISSUES

1. Conditional generative models (CGMs) for tabular data face technical challenges
in modeling complex missingness patterns and interpreting causal mechanisms of
generation.

2. Applications of CGMs to medicine would greatly benefit from integrating multimodal
data sources and prior biological knowledge.

3. We highlight the need for three developments before CGMs can be ethically adopted:
well-defined regulatory oversight, interpretable contracts between producers and users
of synthetic data, and prioritizing diversity and fairness assessments.
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47. Azizi Z,Zheng C,Mosquera L, Pilote L,El EmamK. 2021.Can synthetic data be a proxy for real clinical
trial data? A validation study. BMJ Open 11(4):e043497

48. Alloza C, Knox B, Raad H, Aguilà M, Coakley C, et al. 2023. A case for synthetic data in regulatory
decision-making in Europe. Clin. Pharmacol. Ther. 114(4):795–801

49. OpenSAFELY. 2024. OpenSAFELY: open source platform for NHS electronic health records research.
https://www.opensafely.org/

50. SMART Health IT. 2024. SMART Health IT: connecting healthcare through open standards. https://
smarthealthit.org/

51. Laderas T, Vasilevsky N, Pederson B, Haendel M,McWeeney S, Dorr DA. 2017. Teaching data science
fundamentals through realistic synthetic clinical cardiovascular data. bioRxiv 232611. https://doi.org/
10.1101/232611

52. Gonzales A, Guruswamy G, Smith SR. 2023. Synthetic data in health care: a narrative review. PLOS
Digit. Health 2(1):e0000082

53. Murtaza H, Ahmed M, Khan NF,Murtaza G, Zafar S, Bano A. 2023. Synthetic data generation: state of
the art in health care domain. Comput. Sci. Rev. 48:100546

54. James S, Harbron C, Branson J, Sundler M. 2021. Synthetic data use: exploring use cases to optimise
data utility.Discov. Artif. Intell. 1(1):15

55. Benaim AR, Almog R, Gorelik Y, Hochberg I, Nassar L, et al. 2020. Analyzing medical research re-
sults based on synthetic data and their relation to real data results: systematic comparison from five
observational studies. JMIR Med. Inform. 8(2):e16492

56. McDermott MBA,Wang S,Marinsek N, Ranganath R, Foschini L, Ghassemi M. 2021. Reproducibility
in machine learning for health research: still a ways to go. Sci. Transl. Med. 13(586):eabb1655

57. Walonoski J, Klaus S, Granger E, Hall D, Gregorowicz A, et al. 2020. SyntheaTM novel coronavirus
(COVID-19) model and synthetic data set. Intell. Based Med. 1:100007

Review in Advance. Changes may 
still occur before final publication.

www.annualreviews.org • Conditional Generative Models 43

https://doi.org/10.1177/2053951724123
https://www.opensafely.org/
https://smarthealthit.org/
https://smarthealthit.org/
https://doi.org/10.1101/232611
https://doi.org/10.1101/232611


D
ow

nl
oa

de
d 

fr
om

 w
w

w
.a

nn
ua

lre
vi

ew
s.

or
g.

  S
ta

nf
or

d 
U

ni
ve

rs
ity

 L
ib

ra
rie

s 
(a

r-
22

46
79

) 
IP

:  
12

8.
12

.1
22

.1
95

 O
n:

 T
ue

, 0
4 

M
ar

 2
02

5 
04

:3
0:

09

BD08_Art02_Liu ARjats.cls December 18, 2024 11:55

58. Chen J, Chun D, Patel M, Chiang E, James J. 2019. The validity of synthetic clinical data: a validation
study of a leading synthetic data generator (Synthea) using clinical quality measures. BMC Med. Inform.
Decis. Mak. 19:44

59. IbrahimH,Liu X, Zariffa N,Morris AD,Denniston AK. 2021.Health data poverty: an assailable barrier
to equitable digital health care. Lancet Digit. Health 3(4):e260–65

60. Paik KE, Hicklen R, Kaggwa F, Puyat CV, Nakayama LF, et al. 2023. Digital determinants of
health: Health data poverty amplifies existing health disparities—a scoping review. PLOS Digit. Health
2(10):e0000313

61. Nazha B, Mishra M, Pentz R, Owonikoko TK. 2019. Enrollment of racial minorities in clinical trials:
Old problem assumes new urgency in the age of immunotherapy.Am. Soc. Clin.Oncol. Educ. Book 39:3–10

62. US Food Drug Adm. 2020. Enhancing the diversity of clinical trial populations—eligibility criteria, enroll-
ment practices, and trial designs. Guidance Doc. FDA-2019-D-1264, US Food Drug Adm., Rockville,
MD. https://www.fda.gov/regulatory-information/search-fda-guidance-documents/enhancing-
diversity-clinical-trial-populations-eligibility-criteria-enrollment-practices-and-trial

63. Kaye JB, Schultz LE, Steiner HE, Kittles RA, Cavallari LH, Karnes JH. 2017. Warfarin pharmacoge-
nomics in diverse populations. Pharmacotherapy 37(9):1150–63

64. US Food Drug Adm. 2024.Diversity action plans to improve enrollment of participants from underrepresented
populations in clinical studies. Draft Guidance Doc. FDA-2021-D-0789, US Food Drug Adm., Rockville,
MD. https://www.fda.gov/regulatory-information/search-fda-guidance-documents/diversity-
action-plans-improve-enrollment-participants-underrepresented-populations-clinical-studies

65. Mehrabi N, Morstatter F, Saxena N, Lerman K, Galstyan A. 2021. A survey on bias and fairness in
machine learning. ACM Comput. Surv. 54(6):115

66. Malygina T,Ericheva E,Drokin I. 2019.Data augmentation withGAN: improving chest X-ray patholo-
gies prediction on class-imbalanced cases. In Analysis of Images, Social Networks and Texts: 8th International
Conference, AIST 2019, Kazan, Russia, July 17–19, 2019, Revised Selected Papers, ed. WMP van der Aalst,
V Batagelj, DI Ignatov, M Khachay, V Kuskova, et al., pp. 321–34. Berlin: Springer

67. Chen Y, Yang XH,Wei Z,Heidari AA, Zheng N, et al. 2022.Generative adversarial networks in medical
image augmentation: a review. Comput. Biol. Med. 144:105382

68. Ktena I,Wiles O, Albuquerque I, Rebuffi S-A, Tanno R, et al. 2024. Generative models improve fairness
of medical classifiers under distribution shifts.Nat. Med. 30(4):1166–73

69. Sauber-Cole R, Khoshgoftaar TM. 2022. The use of generative adversarial networks to alleviate class
imbalance in tabular data: a survey. J. Big Data 9(1):98

70. Choi K,Grover A, Singh T, Shu R, Ermon S. 2020. Fair generative modeling via weak supervision. Proc.
Mach. Learn. Res. 119:1887–98

71. Um S, Ye JC. 2023. Don’t play favorites: minority guidance for diffusion models. arXiv:2301.12334
[cs.LG]

72. Lee J, Kim H, Hong Y, Chung HW. 2021. Self-diagnosing GAN: diagnosing underrepresented sam-
ples in generative adversarial networks. In Advances in Neural Information Processing Systems, Vol. 34, ed.
M Ranzato, A Beygelzimer, Y Dauphin, PS Liang, J Wortman Vaughan, pp. 1925–38. Red Hook, NY:
Curran Assoc.

73. Tan S, Shen Y, Zhou B. 2020. Improving the fairness of deep generative models without retraining.
arXiv:2012.04842 [cs.CV]

74. van Breugel B, Kyono T, Berrevoets J, van der Schaar M. 2021. DECAF: Generating fair synthetic data
using causally-aware generative networks. In Advances in Neural Information Processing Systems, Vol. 34,
ed. M Ranzato, A Beygelzimer, Y Dauphin, PS Liang, J Wortman Vaughan, pp. 22221–33. Red Hook,
NY: Curran Assoc.

75. Pujol D, Gilad A, Machanavajjhala A. 2022. Prefair: privately generating justifiably fair synthetic data.
arXiv:2212.10310 [cs.CR]

76. Xu D, Yuan S, Zhang L, Wu X. 2018. Fairgan: fairness-aware generative adversarial networks. In 2018
IEEE International Conference on Big Data (Big Data), pp. 570–75. Piscataway, NJ: IEEE

77. Rajabi A, Garibay OO. 2022. TabFairGAN: fair tabular data generation with generative adversarial
networks.Mach. Learn. Knowl. Extr. 4(2):488–501

Review in Advance. Changes may 
still occur before final publication.

44 Liu • Altman

https://www.fda.gov/regulatory-information/search-fda-guidance-documents/enhancing-diversity-clinical-trial-populations-eligibility-criteria-enrollment-practices-and-trial
https://www.fda.gov/regulatory-information/search-fda-guidance-documents/enhancing-diversity-clinical-trial-populations-eligibility-criteria-enrollment-practices-and-trial
https://www.fda.gov/regulatory-information/search-fda-guidance-documents/diversity-action-plans-improve-enrollment-participants-underrepresented-populations-clinical-studies
https://www.fda.gov/regulatory-information/search-fda-guidance-documents/diversity-action-plans-improve-enrollment-participants-underrepresented-populations-clinical-studies


D
ow

nl
oa

de
d 

fr
om

 w
w

w
.a

nn
ua

lre
vi

ew
s.

or
g.

  S
ta

nf
or

d 
U

ni
ve

rs
ity

 L
ib

ra
rie

s 
(a

r-
22

46
79

) 
IP

:  
12

8.
12

.1
22

.1
95

 O
n:

 T
ue

, 0
4 

M
ar

 2
02

5 
04

:3
0:

09

BD08_Art02_Liu ARjats.cls December 18, 2024 11:55

78. Giuffrè M, Shung DL. 2023. Harnessing the power of synthetic data in healthcare: innovation,
application, and privacy.NPJ Digital Med. 6(1):186

79. Bordukova M, Makarov N, Rodriguez-Esteban R, Schmich F, Menden MP. 2024. Generative artifi-
cial intelligence empowers digital twins in drug discovery and clinical trials. Expert Opin. Drug Discov.
19(1):33–42

80. Georges-Filteau J, Cirillo E. 2020. Synthetic observational health data with GANS: from slow adoption
to a boom in medical research and ultimately digital twins? arXiv:2005.13510 [cs.LG]

81. Chen J, Yi C, Du H, Niyato D, Kang J, et al. 2024. A revolution of personalized healthcare: enabling
human digital twin with mobile AIGC. IEEE Netw. https://doi.org/10.1109/MNET.2024.3366560

82. Venkatesh KP, Raza MM, Kvedar JC. 2022. Health digital twins as tools for precision medicine:
considerations for computation, implementation, and regulation.NPJ Digit. Med. 5(1):150

83. Myles P, Ordish J, Tucker A. 2023. The potential synergies between synthetic data and in silico trials in
relation to generating representative virtual population cohorts. Prog. Biomed. Eng. 5(1):013001

84. Sanson-Fisher RW, Bonevski B, Green LW, D’Este C. 2007. Limitations of the randomized controlled
trial in evaluating population-based health interventions. Am. J. Prev. Med. 33(2):155–61

85. Ghosheh GO, Li J, Zhu T. 2024. A survey of generative adversarial networks for synthesizing structured
electronic health records. ACM Comput. Surv. 56(6):147

86. Kraljevic Z,BeanD, Shek A,Bendayan R,HemingwayH, et al. 2024. Foresight—a generative pretrained
transformer for modelling of patient timelines using electronic health records: a retrospective modelling
study. Lancet Digit. Health 6(4):e281–90

87. Ghebrehiwet I, Zaki N, Damseh R, Mohamad MS. 2024. Revolutionizing personalized medicine with
generative AI: a systematic review. Artif. Intell. Rev. 57:128

88. Yoon J, Jordon J, van der Schaar M. 2018. GANITE: estimation of individualized treatment effects us-
ing generative adversarial nets. Paper presented at the Sixth International Conference on Learning
Representations, Vancouver, Canada

89. Komanduri A, Wu X, Wu Y, Chen F. 2024. From identifiable causal representations to controllable
counterfactual generation: a survey on causal generative modeling. arXiv:2310.11011v2 [cs.LG]

90. Jordon J, Szpruch L, Houssiau F, Bottarelli M, Cherubin G, et al. 2022. Synthetic data – what, why and
how? arXiv:2205.03257 [cs.LG]

91. Figueira A, Vaz B. 2022. Survey on synthetic data generation, evaluation methods and GANs.
Mathematics 10(15):2733

92. Goncalves A, Ray P, Soper B, Stevens J, Coyle L, Sales AP. 2020. Generation and evaluation of synthetic
patient data. BMC Med. Res. Methodol. 20:108

93. Hernandez M, Epelde G, Alberdi A, Cilla R, Rankin D. 2022. Synthetic data generation for tabular
health records: a systematic review.Neurocomputing 493:28–45

94. Perkonoja K, Auranen K, Virta J. 2023. Methods for generating and evaluating synthetic longitudinal
patient data: a systematic review. arXiv:2309.12380 [stat.ME]

95. Xing X, Wu H, Wang L, Stenson I, Yong M, et al. 2023. Non-imaging medical data synthesis for
trustworthy AI: a comprehensive survey. ACM Comput. Surv. 56(7):165

96. Liu T, Fan J, Li G, Tang N, Du X. 2024. Tabular data synthesis with generative adversarial networks:
design space and optimizations. VLDB J. 33(2):255–80

97. Ma F, Wang Y, Gao J, Xiao H, Zhou J. 2020. Rare disease prediction by generating quality-assured
electronic health records. In Proceedings of the 2020 SIAM International Conference on Data Mining, ed.
C Demeniconi, N Chawla, pp. 514–22. Philadelphia, PA: Soc. Ind. Appl. Math.

98. Yang Z, Guo P, Zanna K, Sano A. 2024. Balanced mixed-type tabular data synthesis with diffusion
models. arXiv:2404.08254 [cs.LG]

99. Lu C, Reddy CK, Wang P, Nie D, Ning Y. 2023. Multi-label clinical time-series generation via
conditional GAN. IEEE Trans. Knowl. Data Eng. 36(4):1728–40

100. Engelmann J, Lessmann S. 2021. Conditional Wasserstein GAN-based oversampling of tabular data for
imbalanced learning. Expert Syst. Appl. 174:114582

101. Liu T, Fan J, Tang N, Li G, Du X. 2024. Controllable tabular data synthesis using diffusion models. In
Proceedings of the ACM onManagement of Data, Vol. 2, ed. D Agrawal, Art. 28. New York: Assoc. Comput.
Mach.

Review in Advance. Changes may 
still occur before final publication.

www.annualreviews.org • Conditional Generative Models 45

https://doi.org/10.1109/MNET.2024.3366560


D
ow

nl
oa

de
d 

fr
om

 w
w

w
.a

nn
ua

lre
vi

ew
s.

or
g.

  S
ta

nf
or

d 
U

ni
ve

rs
ity

 L
ib

ra
rie

s 
(a

r-
22

46
79

) 
IP

:  
12

8.
12

.1
22

.1
95

 O
n:

 T
ue

, 0
4 

M
ar

 2
02

5 
04

:3
0:

09

BD08_Art02_Liu ARjats.cls December 18, 2024 11:55

102. Bing S, Dittadi A, Bauer S, Schwab P. 2022. Conditional generation of medical time series for
extrapolation to underrepresented populations. PLOS Digit. Health 1(7):e0000074

103. Ramachandranpillai R, Sikder MF, Bergström D, Heintz F. 2024. Bt-GAN: generating fair synthetic
healthdata via bias-transforming generative adversarial networks. J. Artif. Intell. Res. 79:1313–41

104. Liu Z, Li X, Philip SY. 2023. A counterfactual fair model for longitudinal electronic health records via
Deconfounder. In 2023 IEEE International Conference on Data Mining (ICDM), pp. 1175–80. Piscataway,
NJ: IEEE

105. Liu T, Qian Z, Berrevoets J, van der Schaar M. 2022. GOGGLE: generative modelling for tabular data
by learning relational structure. Paper presented at the Eleventh International Conference on Learning
Representations, Kigali, Rwanda

106. Xu L, Skoularidou M, Cuesta-Infante A, Veeramachaneni K. 2019. Modeling tabular data using condi-
tional GAN. In Advances in Neural Information Processing Systems, Vol. 32, ed. H Wallach, H Larochelle,
A Beygelzimer, F d’Alché-Buc, E Fox, R Garnett, pp. 7335–45. Red Hook, NY: Curran Assoc.

107. Abroshan M, Elliott A, Khalili MM. 2024. Imposing fairness constraints in synthetic data generation.
Proc. Mach. Learn. Res. 238:2269–77

108. Zhao Z, Kunar A, Birke R, Van der Scheer H, LY Chen. 2024. CTAB-GAN+: enhancing tabular data
synthesis. Front. Big Data 6:1296508

109. Tan Y, Zhu H,Wu J, Chai H. 2024. DPTVAE: data-driven prior-based tabular variational autoencoder
for credit data synthesizing. Expert Syst. Appl. 241:122071

110. Theodorou B, Xiao C, Sun J. 2023. Synthesize high-dimensional longitudinal electronic health records
via hierarchical autoregressive language model.Nat. Commun. 14(1):5305

111. Ullah S, Xu Z, Wang H, Menzel S, Sendhoff B, Bäck T. 2020. Exploring clinical time series forecast-
ing with meta-features in variational recurrent models. In 2020 International Joint Conference on Neural
Networks (IJCNN), pp. 1–9. Piscataway, NJ: IEEE

112. Bhave S, Perotte A. 2021. Point processes for competing observations with recurrent networks
(POPCORN): a generative model of EHR data. Proc. Mach. Learn. Res. 149:770–89

113. Rasul K, Seward C, Schuster I, Vollgraf R. 2021. Autoregressive denoising diffusion models for
multivariate probabilistic time series forecasting. Proc. Mach. Learn. Res. 139:8857–68

114. Biswal S, Ghosh S, Duke J, Malin B, Stewart W, et al. 2021. EVA: generating longitudinal electronic
health records using conditional variational autoencoders. Proc. Mach. Learn. Res. 149:260–82

115. Teng X, Pei S, Lin Y-R. 2020. StoCast: stochastic disease forecasting with progression uncertainty. IEEE
J. Biomed. Health Inform. 25(3):850–61

116. Das T, Wang Z, Sun J. 2023. TWIN: personalized clinical trial digital twin generation. In Proceedings
of the 29th ACM SIGKDD Conference on Knowledge Discovery and Data Mining, pp. 402–13. New York:
Assoc. Comput. Mach.

117. Walsh JR, Smith AM, Pouliot Y, Li-Bland D, Loukianov A, Fisher CK. 2020. Generating digital twins
with multiple sclerosis using probabilistic neural networks. arXiv:2002.02779 [stat.ML]

118. Li J,Cairns BJ,Li J,ZhuT.2023.Generating syntheticmixed-type longitudinal electronic health records
for artificial intelligent applications.NPJ Digit. Med. 6(1):98

119. Sun Z, Sun Z, Dong W, Shi J, Huang Z. 2021. Towards predictive analysis on disease progression: a
variational Hawkes process model. IEEE J. Biomed. Health Inform. 25(11):4195–206

120. Dedhia B, Balasubramanian R, Jha NK. 2023. SCouT: synthetic counterfactuals via spatiotemporal
transformers for actionable healthcare. ACM Trans. Comput. Healthc. 4(4):23

121. Zhang Z, Yan C, Lasko TA, Sun J, Malin BA. 2021. SynTEG: a framework for temporal structured
electronic health data simulation. J. Am. Med. Inform. Assoc. 28(3):596–604

122. Shankar V, Yousefi E, Manashty A, Blair D, Teegapuram D. 2023. Clinical-GAN: trajectory forecasting
of clinical events using transformer and generative adversarial networks. Artif. Intell. Med. 138:102507

123. Pang C, Jiang X, Pavinkurve NP,Kalluri KS,Minto EL, et al. 2024. CEHR-GPT: generating electronic
health records with chronological patient timelines. arXiv:2402.04400 [cs.LG]

124. Lee JM, Hauskrecht M. 2021. Modeling multivariate clinical event time-series with recurrent temporal
mechanisms. Artif. Intell. Med. 112:102021

125. Li L, Yan J, Zhang Y, Zhang J, Bao J, et al. 2022. Learning generative RNN-ODE for collaborative
time-series and event sequence forecasting. IEEE Trans. Knowl. Data Eng. 35(7):7118–37

Review in Advance. Changes may 
still occur before final publication.

46 Liu • Altman



D
ow

nl
oa

de
d 

fr
om

 w
w

w
.a

nn
ua

lre
vi

ew
s.

or
g.

  S
ta

nf
or

d 
U

ni
ve

rs
ity

 L
ib

ra
rie

s 
(a

r-
22

46
79

) 
IP

:  
12

8.
12

.1
22

.1
95

 O
n:

 T
ue

, 0
4 

M
ar

 2
02

5 
04

:3
0:

09

BD08_Art02_Liu ARjats.cls December 18, 2024 11:55

126. Wang Z, Sun J. 2022. PromptEHR: conditional electronic healthcare records generation with prompt
learning. arXiv:2211.01761 [cs.CL]

127. Mosquera L, El Emam K,Ding L, Sharma V, Zhang XH, et al. 2023. A method for generating synthetic
longitudinal health data. BMC Med. Res. Methodol. 23(1):67

128. Guyomard V, Fessant F, Guyet T, Bouadi T, Termier A. 2022. VCNet: a self-explaining model
for realistic counterfactual generation. In Machine Learning and Knowledge Discovery in Databases, ed.
MRAmini, SCanu,A Fischer,TGuns,PKraljNovak,GTsoumakas, pp. 437–53.Cham,Switz.: Springer

129. Samoilescu R-F, Van Looveren A, Klaise J. 2021. Model-agnostic and scalable counterfactual
explanations via reinforcement learning. arXiv:2106.02597 [cs.LG]

130. Duong TD, Li Q, Xu G. 2023. CeFlow: a robust and efficient counterfactual explanation framework for
tabular data using normalizing flows. In Advances in Knowledge Discovery and Data Mining: 27th Pacific-
Asia Conference on Knowledge Discovery and Data Mining, PAKDD 2023, Osaka, Japan, May 25–28, 2023,
Proceedings, Part II, ed. H Kashima, T Ide, W-C Peng, pp. 133–44. Cham, Switz.: Springer

131. Nemirovsky D, Thiebaut N, Xu Y, Gupta A. 2022. CounteRGAN: generating counterfactuals for real-
time recourse and interpretability using residual GANs. Proc. Mach. Learn. Res. 180:1488–97

132. Rashidian S, Wang F, Moffitt R, Garcia V, Dutt A, et al. 2020. SMOOTH-GAN: towards sharp and
smooth synthetic EHR data generation. In Artificial Intelligence in Medicine: 18th International Conference
on Artificial Intelligence in Medicine, AIME 2020, Minneapolis, MN, USA, August 25–28, 2020, Proceedings,
ed. M Michalowski, R Moskovitch, pp. 37–48. Cham, Switz.: Springer

133. Sun S,Wang F, Rashidian S, Kurc T, Abell-Hart K, et al. 2021. Generating longitudinal synthetic EHR
data with recurrent autoencoders and generative adversarial networks. In Heterogeneous Data Manage-
ment, Polystores, and Analytics for Healthcare: VLDB Workshops, Poly 2021 and DMAH 2021, Virtual Event,
August 20, 2021, Revised Selected Papers 7, pp. 153–65. Cham, Switz.: Springer

134. Han P, Xu W, Lin W, Cao J, Liu C, et al. 2023. C3-TGAN-controllable tabular data synthesis with
explicit correlations and property constraints. Authorea Preprint. https://www.techrxiv.org/doi/full/
10.36227/techrxiv.24249643.v1

135. Kotelnikov A, Baranchuk D, Rubachev I, Babenko A. 2023. TabDDPM: modelling tabular data with
diffusion models. Proc. Mach. Learn. Res. 202:17564–79

136. Solatorio AV, Dupriez O. 2023. REaLTabFormer: generating realistic relational and tabular data using
transformers. arXiv:2302.02041 [cs.LG]

137. Borisov V, Seßler K, Leemann T, Pawelczyk M, Kasneci G. 2022. Language models are realistic tabular
data generators. arXiv:2210.06280 [cs.LG]

138. Gulati M, Roysdon P. 2024. TabMT: generating tabular data with masked transformers. In Advances in
Neural Information Processing Systems, Vol. 36, ed. A Oh, T Naumann, A Globerson, K Saenko,M Hardt,
S Levine, pp. 46245–54. Red Hook, NY: Curran Assoc.

139. Baak M, Brugman S, Rojas IF, Dalmeida L, Urlus RE, Oger JB. 2022. Synthsonic: fast, probabilistic
modeling and synthesis of tabular data. Proc. Mach. Learn. Res. 151:4747–63

140. Dwork C, Hardt M, Pitassi T, Reingold O, Zemel R. 2012. Fairness through awareness. In Proceedings
of the 3rd Innovations in Theoretical Computer Science Conference, pp. 214–26

141. Wang Y, Blei DM. 2019. The blessings of multiple causes. J. Am. Stat. Assoc. 114(528):1574–96
142. Kusner MJ, Loftus J, Russell C, Silva R. 2017. Counterfactual fairness. In Advances in Neural Information

Processing Systems, Vol. 30, ed. I Guyon,U von Luxburg, S Bengio,HWallach,R Fergus, S Vishwanathan,
R Garnett, pp. 4069–79. Red Hook, NY: Curran Assoc.

143. Lewis M, Liu Y, Goyal N, Ghazvininejad M, Mohamed A, et al. 2019. BART: denoising
sequence-to-sequence pre-training for natural language generation, translation, and comprehension.
arXiv:1910.13461 [cs.CL]

144. Shchur O, Türkmen AC, Januschowski T, Günnemann S. 2021. Neural temporal point processes: a
review. arXiv:2104.03528 [cs.LG]

145. Pearl J. 2019. The seven tools of causal inference, with reflections on machine learning. Commun. ACM
62(3):54–60

146. Stoian MC, Dyrmishi S, Cordy M, Lukasiewicz T, Giunchiglia E. 2024. How realistic is your synthetic
data? Constraining deep generative models for tabular data. arXiv:2402.04823 [cs.LG]

Review in Advance. Changes may 
still occur before final publication.

www.annualreviews.org • Conditional Generative Models 47

https://www.techrxiv.org/doi/full/10.36227/techrxiv.24249643.v1
https://www.techrxiv.org/doi/full/10.36227/techrxiv.24249643.v1


D
ow

nl
oa

de
d 

fr
om

 w
w

w
.a

nn
ua

lre
vi

ew
s.

or
g.

  S
ta

nf
or

d 
U

ni
ve

rs
ity

 L
ib

ra
rie

s 
(a

r-
22

46
79

) 
IP

:  
12

8.
12

.1
22

.1
95

 O
n:

 T
ue

, 0
4 

M
ar

 2
02

5 
04

:3
0:

09

BD08_Art02_Liu ARjats.cls December 18, 2024 11:55

147. Hoogeboom E, Nielsen D, Jaini P, Forré P, Welling M. 2021. Argmax flows and multinomial diffu-
sion: learning categorical distributions. In Advances in Neural Information Processing Systems, Vol. 34, ed.
M Ranzato, A Beygelzimer, Y Dauphin, PS Liang, J Wortman Vaughan, pp. 12454–65. Red Hook, NY:
Curran Assoc.

148. Groenwold RHH. 2020. Informative missingness in electronic health record systems: the curse of
knowing.Diagn. Progn. Res. 4(1):8

149. Nijman S, Leeuwenberg A, Beekers I, Verkouter I, Jacobs J, et al. 2022. Missing data is poorly handled
and reported in prediction model studies using machine learning: a literature review. J. Clin. Epidemiol.
142:218–29

150. Nong P, Williamson A, Anthony D, Platt J, Kardia S. 2022. Discrimination, trust, and withholding
information from providers: implications for missing data and inequity. SSM Popul. Health 18:101092

151. Jang E, Gu S, Poole B. 2016. Categorical reparameterization with Gumbel-Softmax. arXiv:1611.01144
[stat.ML]

152. Ceritli T, Ghosheh GO, Chauhan VK, Zhu T, Creagh AP, Clifton DA. 2023. Synthesizing mixed-type
electronic health records using diffusion models. arXiv:2302.14679 [cs.LG]

153. Müller-FranzesG,Niehues JM,Khader F,Arasteh ST,Haarburger C, et al. 2023.Amultimodal compar-
ison of latent denoising diffusion probabilistic models and generative adversarial networks for medical
image synthesis. Sci. Rep. 13(1):12098

154. Dhariwal P, Nichol A. 2021. Diffusion models beat GANS on image synthesis. In Advances in Neural
Information Processing Systems, Vol. 34, ed.M Ranzato, A Beygelzimer, Y Dauphin, PS Liang, J Wortman
Vaughan, pp. 8780–94. Red Hook, NY: Curran Assoc.

155. Dieleman S, Sartran L, Roshannai A, Savinov N, Ganin Y, et al. 2022. Continuous diffusion for
categorical data. arXiv:2211.15089 [cs.CL]

156. Radford A, Wu J, Child R, Luan D, Amodei D, et al. 2019. Language models are unsupervised mul-
titask learners. OpenAI Blog. https://cdn.openai.com/better-language-models/language_models_
are_unsupervised_multitask_learners.pdf

157. Lee J, Toutanova K. 2018. BERT: pre-training of deep bidirectional transformers for language
understanding. arXiv:1810.04805 [cs.CL]

158. Alaa A,Van Breugel B, Saveliev ES, van der SchaarM. 2022.How faithful is your synthetic data? Sample-
level metrics for evaluating and auditing generative models. Proc. Mach. Learn. Res. 162:290–306

159. Hernadez M, Epelde G, Alberdi A, Cilla R, Rankin D. 2023. Synthetic tabular data evaluation in the
health domain covering resemblance, utility, and privacy dimensions.Methods Inf.Med. 62(Suppl. 1):e19–
38

160. Vallevik VB, Babic A, Marshall SE, Elvatun S, Brøgger H, et al. 2024. Can I trust my fake data – a
comprehensive quality assessment framework for synthetic tabular data in healthcare. arXiv:2401.13716
[cs.LG]

161. Du Y, Li N. 2024. Systematic assessment of tabular data synthesis algorithms. arXiv:2402.06806 [cs.CR]
162. Pereira M, Kshirsagar M, Mukherjee S, Dodhia R, Lavista Ferres J, de Sousa R. 2024. Assessment of

differentially private synthetic data for utility and fairness in end-to-end machine learning pipelines for
tabular data. PLOS ONE 19(2):e0297271

163. Yang SC-H, Eaves B, Schmidt M, Swanson K, Shafto P. 2024. Structured evaluation of synthetic tabular
data. arXiv:2403.10424 [cs.LG]

164. Naeem MF, Oh SJ, Uh Y, Choi Y, Yoo J. 2020. Reliable fidelity and diversity metrics for generative
models. Proc. Mach. Learn. Res. 119:7176–85

165. Qian Z, Davis R, van der Schaar M. 2024. Synthcity: a benchmark framework for diverse use cases of
tabular synthetic data. InAdvances in Neural Information Processing Systems,Vol. 36, ed.AOh,TNaumann,
A Globerson, K Saenko, M Hardt, S Levine, pp. 3173–88. Red Hook, NY: Curran Assoc.

166. Bhanot K, Qi M, Erickson JS, Guyon I, Bennett KP. 2021. The problem of fairness in synthetic
healthcare data. Entropy 23(9):1165

167. Chen J, Xu Y, Wang P, Yang Y. 2023. Deep generative imputation model for missing not at random
data. In Proceedings of the 32nd ACM International Conference on Information and Knowledge Management,
pp. 316–25. New York: Assoc. Comput. Mach.

Review in Advance. Changes may 
still occur before final publication.

48 Liu • Altman

https://cdn.openai.com/better-language-models/language_models_are_unsupervised_multitask_learners.pdf
https://cdn.openai.com/better-language-models/language_models_are_unsupervised_multitask_learners.pdf


D
ow

nl
oa

de
d 

fr
om

 w
w

w
.a

nn
ua

lre
vi

ew
s.

or
g.

  S
ta

nf
or

d 
U

ni
ve

rs
ity

 L
ib

ra
rie

s 
(a

r-
22

46
79

) 
IP

:  
12

8.
12

.1
22

.1
95

 O
n:

 T
ue

, 0
4 

M
ar

 2
02

5 
04

:3
0:

09

BD08_Art02_Liu ARjats.cls December 18, 2024 11:55

168. Pereira RC, Abreu PH, Rodrigues PP. 2022. Partial multiple imputation with variational autoencoders:
tackling not at randomness in healthcare data. IEEE J. Biomed. Health Inform. 26(8):4218–27

169. Ma C, Zhang C. 2021. Identifiable generative models for missing not at random data imputation. In
Advances in Neural Information Processing Systems, Vol. 34, ed. M Ranzato, A Beygelzimer, Y Dauphin,
PS Liang, J Wortman Vaughan, pp. 27645–58. Red Hook, NY: Curran Assoc.

170. Wen B, Cao Y, Yang F, Subbalakshmi K, Chandramouli R. 2022. Causal-TGAN: modeling tabular data
using causally-aware GAN. Poster presented at the ICLR Workshop on Deep Generative Models for
Highly Structured Data, Apr. 29. https://iclr.cc/virtual/2022/7866

171. Rahman MM, Jordan M, Kocaoglu M. 2024. Conditional generative models are sufficient to sample
from any causal effect estimand. arXiv:2402.07419 [cs.LG]

172. Ziegler JD, Subramaniam S, Azzarito M, Doyle O, Krusche P, Coroller T. 2022.Multi-modal conditional
GAN: data synthesis in the medical domain. Poster presented at the NeurIPS 2022Workshop on Synthetic
Data for Empowering ML Research, Dec. 2. https://neurips.cc/virtual/2022/58678

173. Niu S, Ma J, Bai L,Wang Z, Guo L, Yang X. 2024. EHR-KnowGen: knowledge-enhanced multimodal
learning for disease diagnosis generation. Inform. Fusion 102:102069

174. Li R, Yin C, Yang S, Qian B, Zhang P. 2020. Marrying medical domain knowledge with deep learning
on electronic health records: a deep visual analytics approach. J. Med. Internet Res. 22(9):e20645

175. Theodorou B, Jain S, Xiao C, Sun J. 2024. ConSequence: synthesizing logically constrained sequences
for electronic health record generation. In Proceedings of the AAAI Conference on Artificial Intelligence,
Vol. 38, ed. M Wooldridge, J Dy, S Natarajan, pp. 15355–63.Washington, DC: AAAI

176. Off. Shared Solut. Perform. Improv. (OSSPI), Chief Data Off. Counc. (CDO). 2024. Request
for information—synthetic data generation. Federal Register 89(4):783–86. https://www.govinfo.gov/
content/pkg/FR-2024-01-05/pdf/2024-00036.pdf

177. Beduschi A. 2024. Synthetic data protection: towards a paradigm change in data regulation? Big Data
Soc. 11(1). https://doi.org/10.1177/20539517241231277

178. Food Drug Adm US. 2024. Artificial intelligence and machine learning (AI/ML) software as a medical
device. US Food and Drug Administration. https://www.fda.gov/medical-devices/software-medical-
device-samd/artificial-intelligence-and-machine-learning-software-medical-device

179. White House Off. Sci. Technol. Policy. 2024. Blueprint for an AI Bill of Rights. https://www.
whitehouse.gov/ostp/ai-bill-of-rights/

180. Mitchell M, Wu S, Zaldivar A, Barnes P, Vasserman L, et al. 2019. Model cards for model reporting.
In Proceedings of the Conference on Fairness, Accountability, and Transparency, pp. 220–29. New York: Assoc.
Comput. Mach.

181. Gebru T, Morgenstern J, Vecchione B, Vaughan JW, Wallach H, et al. 2021. Datasheets for datasets.
Commun. ACM 64(12):86–92

182. Madras D, Creager E, Pitassi T, Zemel R. 2019. Fairness through causal awareness: learning causal
latent-variable models for biased data. In Proceedings of the Conference on Fairness, Accountability, and
Transparency, pp. 349–58. New York: Assoc. Comput. Mach.

183. Parihar R, Bhat A, Basu A, Mallick S, Kundu JN, Babu RV. 2024. Balancing act: distribution-guided
debiasing in diffusion models. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern
Recognition, pp. 6668–78. Piscataway, NJ: IEEE

Review in Advance. Changes may 
still occur before final publication.

www.annualreviews.org • Conditional Generative Models 49

https://iclr.cc/virtual/2022/7866
https://neurips.cc/virtual/2022/58678
https://www.govinfo.gov/content/pkg/FR-2024-01-05/pdf/2024-00036.pdf
https://www.govinfo.gov/content/pkg/FR-2024-01-05/pdf/2024-00036.pdf
https://doi.org/10.1177/20539517241231277
https://www.fda.gov/medical-devices/software-medical-device-samd/artificial-intelligence-and-machine-learning-software-medical-device
https://www.fda.gov/medical-devices/software-medical-device-samd/artificial-intelligence-and-machine-learning-software-medical-device
https://www.whitehouse.gov/ostp/ai-bill-of-rights/
https://www.whitehouse.gov/ostp/ai-bill-of-rights/

